19 September 2012

Human Stem Cells May Hold Cure for Common Form of Deafness

A cure for deafness is a step closer after scientists funded by the MRC and Action on Hearing Loss used human embryonic stem cells to restore a common form of hearing loss.

Researchers from the University of Sheffield’s Department of Biomedical Sciences developed a method to turn human embryonic stem cells into ear cells.

They then transplanted them into deaf gerbils, obtaining a functional recovery averaging around 46 per cent. The improvement was evident about four weeks after administering the cells.

As well as proving that stem cells can be used to repair damaged hearing, it is hoped the breakthrough – published today in Nature – will lead to new treatments and therapies in the future.

The model of hearing loss successfully treated by the scientists is similar to a human condition known as auditory neuropathy, a form of deafness in which the damage occurs at the level of the cochlear nerve. Auditory neuropathy is the cause of deafness in up to 15 per cent of those with profound hearing loss across the world.

Dr Marcelo Rivolta, who led the project, said:

“We developed a method to drive human embryonic stem cells to produce both hair cells and neurons, or nerve cells, but we only transplanted the neurons. We then used a technique called auditory brainstem evoked responses (ABR), which measures if the brain can perceive an electrical signal after sound stimulation. The responses of the treated animals were substantially better than those untreated, although the range of improvement was broad. Some subjects did very well, while in others recovery was poor.”

Dr Paul Colville-Nash, Programme Manager for stem cell, developmental biology and regenerative medicine at the MRC, added:

“This is promising research that demonstrates further proof-of-concept that stem cells have the potential to treat a range of human diseases that currently have no effective cures. While any new treatment is likely to take years to reach the clinic, this study clearly demonstrates that investment in UK stem cell research and regenerative medicine is beginning to bear fruit, and that is very exciting.”

Auditory neuropathy is a type of deafness where the problem lies, not primarily with the hair cells, but in the connection of the hair cells with the brain. Patients can be born with it and there are cases due to a genetic defect where a few responsible genes have already been identified.

However, there is increasing evidence that environmental factors, such as jaundice at birth and noise exposure later in life, play an important role, at least as risk factors.

Dr Rivolta added:

“We believe this is an important step forward. We now have a method to produce human cochlear sensory cells that we could use to develop new drugs and treatments, and to study the function of genes. And more importantly, we have the proof-of-concept that human stem cells could be used to repair the damaged ear”.

“More research is needed. For instance, we want to understand the long term implications of this treatment and its safety. Moreover, while in auditory neuropathy patients that retain their hair cells the sole application of stem cells could be beneficial; those with more comprehensive damage may need a cochlear implant to compensate for the hair cell deficit. In these patients it is possible that stem cells should be administered in combination with a cochlear implant. It is therefore important to explore this interaction.”

Dr Ralph Holme, Head of Biomedical Research for co-funder Action on Hearing Loss, said:

“The research we have funded at the University of Sheffield is tremendously encouraging and gives us real hope that it will be possible to fix the actual cause of some types of hearing loss in the future. For the millions of people for whom hearing loss is eroding their quality of life, this can’t come soon enough.”

The paper, Restoration of auditory evoked responses by human ES cell-derived otic progenitors is published in Nature.